The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance.
نویسندگان
چکیده
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) plays a key role during C(4) photosynthesis and is involved in anaplerotic metabolism, pH regulation, and stomatal opening. Heterozygous (Pp) and homozygous (pp) forms of a PEPC-deficient mutant of the C(4) dicot Amaranthus edulis were used to study the effect of reduced PEPC activity on CO(2) assimilation rates, stomatal conductance, and (13)CO(2) (Delta(13)C) and C(18)OO (Delta(18)O) isotope discrimination during leaf gas exchange. PEPC activity was reduced to 42% and 3% and the rates of CO(2) assimilation in air dropped to 78% and 10% of the wild-type values in the Pp and pp mutants, respectively. Stomatal conductance in air (531 mubar CO(2)) was similar in the wild-type and Pp mutant but the pp mutant had only 41% of the wild-type steady-state conductance under white light and the stomata opened more slowly in response to increased light or reduced CO(2) partial pressure, suggesting that the C(4) PEPC isoform plays an essential role in stomatal opening. There was little difference in Delta(13)C between the Pp mutant (3.0 per thousand +/- 0.4 per thousand) and wild type (3.3 per thousand +/- 0.4 per thousand), indicating that leakiness (), the ratio of CO(2) leak rate out of the bundle sheath to the rate of CO(2) supply by the C(4) cycle, a measure of the coordination of C(4) photosynthesis, was not affected by a 60% reduction in PEPC activity. In the pp mutant Delta(13)C was 16 per thousand +/- 3.2 per thousand, indicative of direct CO(2) fixation by Rubisco in the bundle sheath at ambient CO(2) partial pressure. Delta(18)O measurements indicated that the extent of isotopic equilibrium between leaf water and the CO(2) at the site of oxygen exchange () was low (0.6) in the wild-type and Pp mutant but increased to 0.9 in the pp mutant. We conclude that in vitro carbonic anhydrase activity overestimated as compared to values determined from Delta(18)O in wild-type plants.
منابع مشابه
Photosynthetic flexibility in maize exposed to salinity and shade
C4 photosynthesis involves a close collaboration of the C3 and C4 metabolic cycles across the mesophyll and bundle-sheath cells. This study investigated the coordination of C4 photosynthesis in maize plants subjected to two salinity (50 and 100mM NaCl) treatments and one shade (20% of full sunlight) treatment. Photosynthetic efficiency was probed by combining leaf gas-exchange measurements with...
متن کاملPhotosynthesis of C3, C3–C4, and C4 grasses at glacial CO2
Most physiology comparisons of C3 and C4 plants are made under current or elevated concentrations of atmospheric CO2 which do not reflect the low CO2 environment under which C4 photosynthesis has evolved. Accordingly, photosynthetic nitrogen (PNUE) and water (PWUE) use efficiency, and the activity of the photosynthetic carboxylases [Rubisco and phosphoenolpyruvate carboxylase (PEPC)] and decarb...
متن کامل3 The Biochemistry of C 4 Photosynthesis
C 4 photosynthesis consists of the coordinated function of two cell types in the leaves, usually designated mesophyll cells (MC) and bundle sheath cells (BSC), because enzymes of the C4 pathway are located separately in these morphologically distinct cell types. In C4 leaves, atmospheric CO2 enters through stomata and is first accessible to MC, where it is fixed by phosphoenolpyruvate (PEP) car...
متن کاملAssociations between partitioning of carboxylase activity and bundle sheath leakiness to C02, carbon isotope discrimination, photosynthesis, and growth in sugarcane
Genetic and environmental variation in carbon isotope discrimination (A), photosynthetic gas exchange, growth and activities of phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase (Rubisco) were studied in four sugarcane clones grown under three different irrigation regimes for 65 d in a greenhouse. A of the uppermost fully expanded leaf increased with decreasing ir...
متن کاملGreater efficiency of photosynthetic carbon fixation due to single amino-acid substitution
The C4-photosynthetic carbon cycle is an elaborated addition to the classical C3-photosynthetic pathway, which improves solar conversion efficiency. The key enzyme in this pathway, phosphoenolpyruvate carboxylase, has evolved from an ancestral non-photosynthetic C3 phosphoenolpyruvate carboxylase. During evolution, C4 phosphoenolpyruvate carboxylase has increased its kinetic efficiency and redu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 145 3 شماره
صفحات -
تاریخ انتشار 2007